
Performance Tuning with

Execution Plans

GOAL

• Show where, how and why

performance issues appear within

execution plans in order to better

understand how to use execution

plans to troubleshoot SQL Server

query performance

Let’s Talk

scarydba.com

grant@scarydba.com

@gfritchey

Grant Fritchey

Today’s Agenda

• Introduction to Execution Plans

• Common T-SQL Code Smells

• Worked Examples

• Querying the Plan Cache

• More Worked Examples

• Parameter Sniffing

• Additional Tools

Introduction to Execution

Plans

Execution Plans

• Execution plans are a representation

of the processes used by the query

engine to perform the query

submitted to SQL Server.

Relational Engine

QUERY

RESULT

Relational

Engine

Query

Parsor

Syntax
Check

Parse

Tree

Algebrizer

Resolves
Objects

Query

Processor

Tree

Optimizer

Execution

Plan

Query

Processor

QUERY OPTIMIZER

Optimizer

• Cost-Based
– Just an estimate

– Not based on your computer

• Statistics
– Defined in indexes and tables

– Must be maintained to ensure a good execution
plan

• Cache
– Every query goes to cache (almost)

Generating a Plan

• SQL Server Management Studio
– Estimated

– Actual

• Procedure Cache
– Estimated (sort of)

• Extended Events
– Estimated

– Actual

• Trace Events (not recommended)
– Estimated

– Actual

Tune the Query
Small to medium, look at the query first

Medium to large, go straight to the execution plan

Very large and insane, query the execution plan

Watch for low-hanging fruit

Fix syntax over stats
Stats over indexing

Indexing over restructuring
Restructuring

Read the execution plan

Understand the business needs

Where To Start?

Where To Start?

First Operator

• Plan size

• Compile time

• Memory grant

• Missing Indexes

• Optimization level

• Parameter
– Compiled value

– Runtime Value

• Query hash

• Reason for early termination

• ANSI settings

Right to Left or Left to Right?

• A clue: English

• Another clue: These things

Left to Right or Right to Left

• Answer: Both

• Logical processing order:
– Represents how the optimizer sees the query

– Reading it from Left to Right

• Physical processing order
– Represents the flow of data

– Follow the arrows/pipes from Right to Left

• Both are necessary to understand certain plans

What Else to Look For

• Warnings

• Most Costly Operations

• Fat Pipes

• Extra Operations

• Scans

• Estimated vs. Actual

Demo

Summary

• Execution plans are your view into the optimizer

• You can capture plans multiple ways

• You start with the first operator

• Additional things to look for include:
– Warnings

– Most costly operations

– Fat pipes

– Extra operations

– Scans

– Estimated vs. Actual

• Remember that these are just representations

Common T-SQL Code

Smells

Code Smells

• A code smell is a piece of code that

functions, but doesn’t function in the

best possible way within a given set

of circumstances

T-SQL Code Smells

• Functions on Predicates

• Data Conversion (Implicit & Explicit)

• Cursors

• Nested Views

• IF Logic

• Multi-Statement Table-Valued User
Defined Functions

Demo

Worked Examples

Demo

Querying the Plan

Execution Plans From

CacheSELECT TOP 10

SUBSTRING(dest.text, (deqs.statement_start_offset / 2) + 1,

(CASE deqs.statement_end_offset

WHEN -1 THEN DATALENGTH(dest.text)

ELSE deqs.statement_end_offset

- deqs.statement_start_offset

END) / 2 + 1) AS querystatement,

deqp.query_plan,

deqs.query_hash,

deqs.execution_count

FROM sys.dm_exec_query_stats AS deqs

CROSS APPLY sys.dm_exec_query_plan(deqs.plan_handle) AS deqp

CROSS APPLY sys.dm_exec_sql_text(deqs.sql_handle) AS dest

ORDER BY deqs.total_elapsed_time DESC;

Inside Execution Plans
SELECT DB_NAME(deqp.dbid),

SUBSTRING(dest.text, (deqs.statement_start_offset / 2) + 1,

(CASE deqs.statement_end_offset

WHEN -1 THEN DATALENGTH(dest.text)

ELSE deqs.statement_end_offset

END - deqs.statement_start_offset) / 2 + 1) AS StatementText,

deqs.statement_end_offset,

deqs.statement_start_offset,

deqp.query_plan,

deqs.execution_count,

deqs.total_elapsed_time,

deqs.total_logical_reads,

deqs.total_logical_writes

FROM sys.dm_exec_query_stats AS deqs

CROSS APPLY sys.dm_exec_query_plan(deqs.plan_handle) AS deqp

CROSS APPLY sys.dm_exec_sql_text(deqs.sql_handle) AS dest

WHERE CAST(deqp.query_plan AS NVARCHAR(MAX)) LIKE '%StatementOptmEarlyAbortReason="TimeOut"%';

Interesting Dynamic

Management Objects
• Sys.dm_exec_query_plan

• sys.dm_exec_query_profiles

• Sys.dm_exec_text_query_plan

Demo

Additional Resources

• Sp_whoisactive – Adam Machanic

• Diagnostic Queries – Glen Berry

• Performance Tuning with SQL Server

Dynamic Management Views – Louis

Davidson and Tim Ford

http://sqlblog.com/blogs/adam_machanic/archive/tags/who+is+active/default.aspx
https://sqlserverperformance.wordpress.com/tag/dmv-queries/
http://download.red-gate.com/ebooks/SQL/eBook_Performance_Tuning_Davidson_Ford.pdf

More Worked Examples

Demo

Parameter Sniffing

http://download.red-

gate.com/ebooks/SQL/eBook_Perform

ance_Tuning_Davidson_Ford.pdf

Parameter Sniffing

• It’s a good thing… except when it

isn’t

• Automatic

• Only works on parameters (with an

exception)

• It’s all about statistics

– Average vs. Specific

Parameter list in execution plan

Bad Parameter Sniffing

• Differentiate from parameter sniffing

• Still about statistics

• Intermittent

• Different plans

• Focus on the compiled value

• Compare to runtime

• When it’s bad, it’s very bad

Local Variables

• Eliminate parameters

• Turn parameters into local variables

• Produces “generic” plan

Variable Sniffing

• The exception to parameters

• Same process

• Only works in a recompile situation

• Invisible killer or guardian angel

OPTIMIZE FOR <value>

• Specific and accurate

• Changes over time

• Produces “precise” plan

OPTIMIZE FOR

UNKNOWN
• For when you’re not sure

• Changes over time

• Produces “generic” plan

WITH RECOMPILE

• Specific every time

• Increases overhead

• May be more costly than

Statistics

• After all, it’s all about the statistics

• Stats can age w/o updating

• You may have auto-update turned

off

• Sampled updates may be

inadequate

• Filtered statistics may help

Plan Guides

• Just a different way to use hints

• Produces whatever plan you define

Turn Sniffing Off

• Dangerous choice

• Last for a reason

• Very dangerous

• Turns it all off

• Everywhere

• Did I mention it’s dangerous?

Demo

Additional Tools

Supratimas

• Web based

• Free

• Easy to use

• Limited Functionality

http://www.supratimas.com/

SQL Sentry Plan Explorer

• Application

• Free and Paid Version

• Easy to Use

• Extensive Funtionality

Query Store

• Azure SQL Database

• SQL Server 2016

• Guaranteed to change how you

monitor and tune queries

Demo

Conclusion

Tune the Query

• Small to medium, look at the query first

• Medium to large, go straight to the execution plan

• Very large and insane, query the execution plan

• Watch for low-hanging fruit

• Fix syntax over stats
– Stats over indexing

• Indexing over restructuring
– Restructuring

• Read the execution plan

• Understand the business needs

56

Resources

• Scarydba.com/resources

• SQL Server Execution Plans

• SQL Server Query Performance

Tuning

Rate This Session Now!
Rate with Mobile App:

• Select the session from the

Agenda or Speakers menus

• Select the Actions tab

• Click Rate Session

Rate with Website:

Register at www.devconnections.com/logintoratesession

Go to www.devconnections.com/ratesession

Select this session from the list and rate it

Tell Us

What

You

Thought

of This

Session

Be Entered to

WIN
Prizes!

#ITDEVCON

Let’s Talk

scarydba.com

grant@scarydba.com

@gfritchey

Grant Fritchey

