

Query Performance Tuning: Start to Finish

Grant Fritchey

Who?

- Product Evangelist for Red Gate Software
- Microsoft SQL Server MVP
- PASS Chapter President
- Microsoft*
 Most Valuable
 Professional

- Author:
 - SQL Server Execution Plans
 - SQL Server 2008 Query Performance Tuning Distilled

Why Tune Queries?

- Most volatile aspect of a database system
- Subject to changes in data
- Affected by changes in structure
- Impacted by poor coding choices
- Victim of resource contention

Finish Line

- The ability to collect performance metrics on their servers as part of an overall query tuning methodology
- An understanding of how the optimizer works in support of writing better TSQL code as well as troubleshooting poorly performing queries
- The ability to generate, read, and understand execution plans from multiple sources in support of troubleshooting poorly performing queries
- A working knowledge of DMVs that will help them identify and fix performance issues on their servers
- The ability to address common query performance problems

Query Performance Tuning – Start to Finish

GATHERING METRICS

Finish Line

- The ability to collect performance metrics on their servers as part of an overall query tuning methodology
- An understanding of how the optimizer works in support of writing better TSQL code as well as troubleshooting poorly performing queries
- The ability to generate, read, and understand execution plans from multiple sources in support of troubleshooting poorly performing queries
- A working knowledge of DMVs that will help them identify and fix performance issues on their servers
- The ability to address common query performance problems

Where to Start Tuning?

- Random
 - Pick a query?
 - Ask a user?
 - Alphabetically?
- Knowledge based
 - Baseline
 - Metrics
 - Records

Server Metrics

- Start Query Tuning at the Server
 - Hardware
 - Operating System
 - SQL Server
- Establish a Baseline
 - Now is a good time
 - Save the data

Tools for the Baseline

- Performance Monitor
- Dynamic Management Objects (DMO)
- SQL Data Collection
- Third Party Software

Where Do Problems Occur?

- Memory
- Disk I/O
- Processor
- Network

DO NOT SIMPLY TRUST THESE NUMBERS

Memory

Object	Counter	Values
Memory	Pages/sec	Peaks < 50
	Page Faults/sec	Compare with baseline value for trend analysis
SQL Server: Buffer Manager	Buffer cache hit ratio	Average value >= 90
	Page Life Expectancy	Average value > 300
	Checkpoint Pages/Sec	Peak < 30
SQL Server:Memory Manager	Memory Grants Pending	Peaks = 0

Disk I/O

Object	Counter	Values
PhysicalDisk	% Disk Time	Peaks < 85%
	Avg. Disk Queue Length*	Peaks < 3 per disk
	Disk Transfers/sec	Maximum value < 100 per disk
	Avg. Disk sec/Read	Compare to baseline
	Avg. Disk sec/Write	Compare to baseline

* Meaningless on a SAN

Processor

Object	Counter	Value
Processor	% Processor Time	Peaks < 80%
System	Context Switches/sec	Peaks < 1,000
	Processor Queue Length	Peaks < 3
SQL Statistics	Batch Requests/sec	Compare to Baseline
	SQL Compilations/sec	Peaks > 100
	SQL Recompilations/sec	

Network

Object	Counter	Value
Network Interface	Bytes Total/sec	Peaks < 50% of NIC capacity
Network Segment	% Net Utilization	Peaks <80% of network bandwidth

Performance Monitor

- Positives:
 - Absolute Best "Do It Yourself" Option
 - Powerful
 - Accurate
 - Easy to Use
 - Ubiquitous
- Negatives
 - A lot of work to set up, maintain & clean data
 - Very little direction

Dynamic Management Objects

- Positives
 - Easy to use
 - In a language you know
 - Data is ready to query
 - Ubiquitous
- Negatives
 - Incomplete
 - No direction

SQL Data Collection

- Positives
 - Immediate results
 - Pre-generated reports
 - Easy to implement
- Negatives
 - Enterprise Only
 - 2008 Only
 - Limited Data Set

Third Party Tools

- Positives
 - Lots of Direction
 - Ready to consume reports
 - Immediate returns
- Negatives
 - Costly
 - May not collect what you need or want

Wait Stats & Queues

- sys.dm_os_wait_stats
- Sys.dm_exec_requests
- Sys.dm_waiting_tasks

Query Metrics

- This is where you live
- Too much information
- Save the data, just not in its original form
- DO NOT USE PROFILER ON PRODUCTION SYSTEMS

The Server Side Trace

- Profiler to Generate the Script
- Files work best
- Clean and Store the Data
- Profiler GUI can be used to Browse Data
 - Works with Perfmon Data
- Schedule the Start and Stop

RML Utilities

- Free
- Huge Time Savings
- Excellent Resource
- Still Need Long-Term Storage & Reporting

Query DMOs

- Sys.dm_exec_requests
- Sys.dm_exec_query_stats
- Sys.dm_exec_procedure_stats

Metrics Resources

- "SQL Server 2008 Query Performance Tuning Distilled"
- Microsoft White Paper: Performance Tuning Waits and Queues.doc http://technet.microsoft.com/en-us/library/cc966413.aspx
- Microsoft White Paper: Troubleshooting Performance Problems in SQL Server 2008 http://msdn.microsoft.com/en-us/library/dd672789.aspx
- Brad McGehee
- Louis Davidson &

Finish Line

- The ability to collect performance metrics on their servers as part of an overall query tuning methodology
- An understanding of how the optimizer works in support of writing better TSQL code as well as troubleshooting poorly performing queries
- The ability to generate, read, and understand execution plans from multiple sources in support of troubleshooting poorly performing queries
- A working knowledge of DMVs that will help them identify and fix performance issues on their servers
- The ability to address common query performance problems

Questions?

How would you...?

Mhat happens when... ?

Why does...?

When do I...?

Query Performance Tuning: Start to Finish

OPTIMIZER, STATISTICS, INDEXES & CONSTRAINTS

Finish Line

- The ability to collect performance metrics on their servers as part of an overall query tuning methodology
- An understanding of how the optimizer works in support of writing better TSQL code as well as troubleshooting poorly performing queries
- The ability to generate, read, and understand execution plans from multiple sources in support of troubleshooting poorly performing queries
- A working knowledge of DMVs that will help them identify and fix performance issues on their servers
- The ability to address common query performance problems

Optimizer

- Simply an Amazing piece of Software
- Cost-based
- Not Perfect
- Plan on Helping the Optimizer

Observing the Optimizer

- Sys.dm_exec_query_optimizer_info
- Execution Plans

Statistics

- Information about the Distribution of the Data
 - Created on Index Keys
 - Created on columns
 - Created manually
- Cardinality
- By Default, Created Automatically
- By Default, Maintained Automatically
- Automatic Maintenance Is Not Enough

Investigating Statistics

- DBCC SHOW_STATISTICS(table, target)
 - Header

	Name	Updated	Rows	Rows Sampled	Steps	Density	Average key len	String Index	Filter Expressi	Unfiltered Rows
1	IX_TransactionHistoryArchive_ProductID	Jan 19 2011 9:57PM	89253	89253	200	0.04100511	8	NO	NULL	89253

Density

	All density	Average Len	Columns
1	0.002012072	4	ProductID
2	1.120411E-05	8	ProductID, TransactionID

Histogram

	RANGE_HI_KEY	RANGE_ROWS	EQ_ROWS	DISTINCT_RANGE_ROWS	AVG_RANGE_ROWS
1	1	0	6	0	1
	3	5	786	1	5
3	316	6	786	1	6
4	324	82	786	7	11.71429
5	327	10	786	2	5
6	328	0	619	0	1
7	329	0	781	0	1
8	331	58	786	1	58
_	350 PASS Y/A	56	786	10	5.6

Histogram

- 200 steps across the data
- An equal distribution of rows
- Leads to best possible sampling of data
 - But it's not perfect

Updating Statistics

- sp_updatestats
 - Can resample
 - Won't run everywhere
- UPDATE STATISTICS X
 - WITH FULLSCAN

Indexes

- Clustered Index
 - Primary Key Default (but not necessary)
 - Data is stored at the leaf level
 - Data is ordered by the key
- Non-clustered Index
 - Uses cluster key or RID of a heap
 - INCLUDE stored at leaf
- And the rest outside the scope of this session

Constraints

- Primary Key
 - Cluster by default, but doesn't have to be
 - Always an index
- Foreign Key
 - No indexes are created with this constraint
- Unique Constraint
 - This constraint is an index

What's All This Mean?

SELECT ID FROM TableA WHERE ID = 42

What's All This Mean?

SELECT a.ID, b.Name, c.Value
FROM TableA as a
JOIN TableB as b
On a.ID = B.ID
JOIN TableC as c
ON b.OtherID = c.OtherID
WHERE a.ID = 42

324 Possible Plans

Finish Line

- The ability to collect performance metrics on their servers as part of an overall query tuning methodology
- An understanding of how the optimizer works in support of writing better TSQL code as well as troubleshooting poorly performing queries
- The ability to generate, read, and understand execution plans from multiple sources in support of troubleshooting poorly performing queries
- A working knowledge of DMVs that will help them identify and fix performance issues on their servers
- The ability to address common query performance problems

Questions?

How would you...?

Mhat happens when... ?

Why does...?

When do I...?

Optimizer Resources

- Dr. Dewitt's Key Note, PASS Summit 2010
 http://www.facebook.com/l.php?u=http%3A%2F
 %2Fwww.slideshare.net%2FGraySystemsLab%2Fpass-summit-2010-keynote-david-dewitt&h=306f5
- "Inside SQL Server 2008 T-SQL Querying" Itzik Ben-Gan
- "SQL Server 2008 Internals" Kalen Delaney

Query Performance Tuning: Start to Finish

READING EXECUTION PLANS

Finish Line

- The ability to collect performance metrics on their servers as part of an overall query tuning methodology
- An understanding of how the optimizer works in support of writing better TSQL code as well as troubleshooting poorly performing queries
- The ability to generate, read, and understand execution plans from multiple sources in support of troubleshooting poorly performing queries
- A working knowledge of DMVs that will help them identify and fix performance issues on their servers
- The ability to address common query performance problems

Why Execution Plans

- What will be accessed
- What indexes were used
- What kind of joins were used
- How much did all these operations cost
- Tuning
- Troubleshooting

Concepts and Architecture

- Relational Engine
 - Estimated Execution Plan
- Storage Engine
 - Actual Execution Plan
- Optimizer
 - Cost-Based
 - Just an estimate
 - Not based on your computer
- Cache
 - Most queries go to cache

Graphical Plans

- Basic Execution
- Join
- Update
- Delete
- Insert
- Sub-select
- Views

XML Plans

- Every Graphical Plan is XML
- All cached plans are XML
- Text plans show less information

Indicators

- Scans (but not always)
- Hash Joins (but not always)
- Work Tables (but not always)
- Extra Operators
- Fat Pipes
- Estimated/Actual Disparity

Execution Plan Resources

- SQL Server Execution Plans
- Microsoft Whitepapers and Web Sites
 - Statistics used by the Query Optimizer
 http://www.microsoft.com/technet/prodtechnol/sql/2005/qrystats.mspx
 - Compilation and Caching
 http://www.microsoft.com/technet/prodtechnol/sql/2005/recomp.mspx
 - Showplan Security
 http://technet.microsoft.com/en-us/library/ms189602.aspx
 - Understanding Joins
 http://technet.microsoft.com/en-us/library/ms191426.aspx
 - Analyzing a Query
 http://technet.microsoft.com/en-us/library/ms191227.aspx
 - Database Engine Developer Info Center
 http://technet.microsoft.com/en-us/library/ms191267.aspx
 - Database Engine Architect Info Center
 http://technet.microsoft.com/en-us/library/ms175560.aspx
 - Forcing Query Plans
 http://download.microsoft.com/download/4/7/a/47a548b9-249e-484c-abd7-29f31282b04d/Forcing_Query_Plans.doc
- PASS Top 10 Execution Plan Web Sites

Finish Line

- The ability to collect performance metrics on their servers as part of an overall query tuning methodology
- An understanding of how the optimizer works in support of writing better TSQL code as well as troubleshooting poorly performing queries
- The ability to generate, read, and understand execution plans from multiple sources in support of troubleshooting poorly performing queries
- A working knowledge of DMVs that will help them identify and fix performance issues on their servers
- The ability to address common query performance problems

Questions?

How would you...?

Mhat happens when... ?

Why does...?

When do I...?

Query Performance Tuning: Start to Finish

DYNAMIC MANAGEMENT OBJECTS

Finish Line

- The ability to collect performance metrics on their servers as part of an overall query tuning methodology
- An understanding of how the optimizer works in support of writing better TSQL code as well as troubleshooting poorly performing queries
- The ability to generate, read, and understand execution plans from multiple sources in support of troubleshooting poorly performing queries
- A working knowledge of DMVs that will help them identify and fix performance issues on their servers
- The ability to address common query performance problems

What is a DMOs

- Internal State Data
- Functions and Views
- Security
 - VIEW SERVER STATE
 - VIEW DATABASE STATE

Currently Running

- Answer Immediate Questions
- Not Cache Dependent
 - But is dependent on execution
- Options:
 - Sys.dm_exec_requests
 - Sys.dm_tran_active_transactions
 - Sys.dm_os_waiting_tasks
 - Sys.dm_db_index_operational_stats

Recently Running

- Answer Historical Questions
- Aggregate data, not individual calls
- Completely dependent on the cache
- Options:
 - Sys.dm_exec_query_stats
 - Sys.dm_exec_procedure_stats

Execution Plans

- Estimated Plans Only
- Parameters are unavailable
- Cache Dependent
- Options:
 - Sys.dm_exec_cached_plans
 - Sys.dm_exec_query_plan
 - Sys.dm_exec_text_query_plan

Query Text

- Batch Text
- Statement Text
 - Using Offset
- Cache Dependent
- Options:
 - Sys.dm_exec_sql_text

Finish Line

- The ability to collect performance metrics on their servers as part of an overall query tuning methodology
- An understanding of how the optimizer works in support of writing better TSQL code as well as troubleshooting poorly performing queries
- The ability to generate, read, and understand execution plans from multiple sources in support of troubleshooting poorly performing queries
- A working knowledge of DMVs that will help them identify and fix performance issues on their servers
- The ability to address common query performance problems

Questions?

How would you...?

Mhat happens when... ?

Why does...?

When do I...?

Query Performance Tuning: Start to Finish

COMMON PROBLEMS

Finish Line

- The ability to collect performance metrics on their servers as part of an overall query tuning methodology
- An understanding of how the optimizer works in support of writing better TSQL code as well as troubleshooting poorly performing queries
- The ability to generate, read, and understand execution plans from multiple sources in support of troubleshooting poorly performing queries
- A working knowledge of DMVs that will help them identify and fix performance issues on their servers
- The ability to address common query performance problems

Common Problems

- Slow Running Query
- Key Lookup
- Parameter Sniffing
- Index Use
- Table Valued User Defined Functions
- Triggers
- Other Ways to Get Them

Slow Running Query

Description

- Most commonly used purpose for execution plans
- Great tool for observing behavior
- Lousy tool for comparing performance
- Drilling down is the key

Indications

- Fat pipes
- Scans
- Estimated/Actual
- Extra operations

Solutions

Fix it

Key Lookup

- Description
 - AKA Bookmark Lookup
 - Not necessarily a problem
- Indications
 - Key Lookup Operator and a Join
- Solutions
 - Change Query
 - Change the index
 - INCLUDE

Parameter Sniffing

Description

- In general, this is a good thing
- Depends on the data distribution and parameters used

Indications

- Intermittent poor performance
- Disparity on estimated & actual rows
- Different execution plans at different times

Solutions

- OPTIMIZE FOR query hint
- Use local parameters
- Last resort RECOMPILE query hint
- Last last resort Plan Guides

Index Use

Descriptions

- Just because you see the index name, doesn't mean it's getting used properly
- Scans are not necessarily bad
- Seeks are not necessarily good

Indications

- Table Scan
- Index Scan
- Extra operators like table spool or sort

Solutions

- Create an index
- Modify an index
- Modify the query

Table Valued User Defined Functions

Description

- Yes, I see it. It says 0%. It's a lie.
- "One row is a tragedy; one million is a statistic."
 Joseph Stalin (sort of)

Indications

- Table Scan with a cost of 0%
- Or Table Valued Function with a cost of 0%

Solutions

 When working with more than a few rows... don't use them

Triggers

Description

- Triggers are not immediately visible
- Estimated plan won't display
- Slow performance from query that shouldn't be
- Querying from optimizer...TEST TEST TEST this

Indications

- Second plan with the actual plan
- No hint of it in the estimated plan

Solutions

- Be sure the trigger is optimized
- Avoid where possible

Individual Statement is Slow

- Large queries or lots of queries
- The exact execution plan you want may be hard to find
- SHOWPLAN_XML Estimated
- STATISTICS XML Actual

Query is Sometimes Slow

- Intermittent behavior is hard to catch
- Profiler
 - Not the gui
 - Server-side trace
- Even with a server-side trace, capturing execution plans is more expensive (primarily disk space), exercise restraint
 - Data size increase from 2k to 64k for an XML Plan per statement
 - Added overhead for storage and processing

Query Was Slow Earlier Today

- Knowing that the query is in cache is the key
- Once it's in cache, DMV's are your friend
 - sys.dm_exec_cached_plans
 - sys.dm_exec_query_plan
 - Really large plans won't be stored here
 - sys.dm_exec_query_stats
 - sys.dm_exec_plan_attributes
 - sys.dm_exec_sql_text
 - sys.dm_exec_text_query_plan
 - Used for really large plans

Identifying Similar Queries

- Ad hoc systems need hugs/tuning too
 - Identifying similar queries can suggest needed indexes
 - Similar queries could be candidates for procedures
- Multiple stored procedures may have same query
- Query Hash to see similarities in query
- Query Plan Hash to see similarities in query plan

Working With Large Plans

- Really large plans are hard to read
- Large plans in text
- Large plans in XML
 - In XML, XQuery opens up the plan
- Using XML has other benefits

Finish Line

- The ability to collect performance metrics on their servers as part of an overall query tuning methodology
- An understanding of how the optimizer works in support of writing better TSQL code as well as troubleshooting poorly performing queries
- The ability to generate, read, and understand execution plans from multiple sources in support of troubleshooting poorly performing queries
- A working knowledge of DMVs that will help them identify and fix performance issues on their servers
- The ability to address common query performance problems

Questions?

How would you...?

Mhat happens when... ?

Why does...?

When do I...?

Query Performance Tuning: Start to Finish

ADVANCED SOLUTIONS

Advanced Solutions

- Query Hints
- JOIN Hints
- Table Hints
- Plan Guides
- Plan Forcing

Hints

- Are you smarter than these guys?
- Have you spent more time working on SQL Server internals than these guys?
- Then why do you think you should take control of the optimizer?

Query Hints

- Unions
- Joins
- FORCE ORDER
- MAXDOP
- OPTIMIZE FOR
- ROBUST PLAN
- KEEPFIXED PLAN

Join Hints

- Loop
- Merge
- Hash

Table Hints

- NOEXPAND
- INDEX()
- FAST N

Plan Guides

- For Use When You Can't Modify Code
- Three Kinds
 - Object
 - SQL
 - Template
- Applies Hints

Plan Forcing

- USE PLAN
- As close as you can get to direct control of the Optimizer
- Still can't actually control it
- Absolute Last Ditch Efforts
- Limits:
 - Must be a valid plan
 - No INSERT, UPDATE, DELETE
 - No distributed or full text queries
 - Cursors can only be static or fast_forward

Finish Line

- The ability to collect performance metrics on their servers as part of an overall query tuning methodology
- The ability to generate, read, and understand execution plans from multiple sources in support of troubleshooting poorly performing queries
- An understanding of how the optimizer works in support of writing better TSQL code as well as troubleshooting poorly performing queries
- A working knowledge of DMVs that will help them identify and fix performance issues on their servers
- The ability to address common query performance problems

Questions?

How would you...?

Mhat happens when... ?

Why does...?

When do I...?

Please Complete the Evaluation Form

Pick up your evaluation form:

In each presentation room

Drop off your completed form

- Near the exit of each presentation room
- At the registration area

Presented by Dell

THANK YOU!

For attending this session and PASS SQLRally Orlando, Florida

Presented by Dell

